Lower Bounds for the Weak Pigeonhole Principle and Random Formulas beyond Resolution

نویسندگان

  • Albert Atserias
  • Maria Luisa Bonet
  • Juan Luis Esteban
چکیده

We work with an extension of Resolution, called Res(2), that allows clauses with conjunctions of two literals. In this system there are rules to introduce and eliminate such conjunctions. We prove that the weak pigeonhole principle PHPcn n and random unsatisfiable CNF formulas require exponential-size proofs in this system. This is the strongest system beyond Resolution for which such lower bounds are known. As a consequence to the result about the weak pigeonhole principle, Res(log) is exponentially more powerful than Res(2). Also we prove that Resolution cannot polynomially simulate Res(2) and that Res(2) does not have feasible monotone interpolation solving an open problem posed by Krajı́ček. C © 2002 Elsevier Science (USA)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds for the Weak Pigeonhole Principle Beyond Resolution

We work with an extension of Resolution, called Res(2), that allows clauses with conjunctions of two literals. In this system there are rules to introduce and eliminate such conjunctions. We prove that the weak pigeonhole principle and random unsatisfiable CNF formulas require exponential-size proofs in this system. This is the strongest system beyond Resolution for which such lower bounds are ...

متن کامل

Simplified and Improved Resolution Lower Bounds

We give simple new lower bounds on the lengths of Resolution proofs for the pigeonhole principle and for randomly generated formulas. For random formulas, our bounds signiicantly extend the range of formula sizes for which non-trivial lower bounds are known. For example, we show that with probability approaching 1, any Resolution refutation of a randomly chosen 3-CNF formula with at most n 6=5?...

متن کامل

$P \ne NP$, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle

Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length Ω(2n ǫ ), (for a constant ǫ = 1/3). One corollary is that certain propositional formulations of the statement P 6= NP do not hav...

متن کامل

P != NP, propositional proof complexity, and resolution lower bounds for the weak pigeonhole principle

Recent results established exponential lower bounds for the length of any Resolution proof for the weak pigeonhole principle. More formally, it was proved that any Resolution proof for the weak pigeonhole principle, with n holes and any number of pigeons, is of length fl(2 ), (for a constant e = 1/3). One corollary is that certain propositional formulations of the statement P / NP do not have s...

متن کامل

Resolution and the Weak Pigeonhole Principle

We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Comput.

دوره 176  شماره 

صفحات  -

تاریخ انتشار 2002